Course Name: Thermodynamics for Biological Systems: Classical and Statistical Aspect

Course abstract

Thermodynamics is one of the essential tools to analyze biological systems. Thus, it is essential that an undergraduate in biological engineering knows the relevant thermodynamics principles. Classical thermodynamics is suitable for analysis in the continuum domain, whereas when the number of molecules per cell is less than say 100, the principles of classical thermodynamics are invalid for that species. However, the principles of statistical thermodynamics can be used to analyze such situations, and other situations too. Therefore, this course will cover both classical and statistical aspects to provide a complete set of tools to a biological engineer to thermodynamically analyze bio-systems. Such an analysis will help in manipulation and design of bio-systems.


Course Instructor

Media Object

Prof. G. K. Suraishkumar

Prof. Suraishkumar G K is a Professor in the Department of Biotechnology, Indian Institute of Technology Madras (IITM). He has been at IITM as a Professor since May 2004, and was earlier a faculty member in the Department of Chemical Engineering at the Indian Institute of Technology Bombay (IITB) from April 1993 until mid-May 2004. He was also an Associate Faculty member in the erstwhile Centre for Biotechnology, which is now the Department of Biosciences and Bioengineering, at IITB, between 1995 and 2004. He earned his Ph.D. from Drexel University, Philadelphia, USA in 1993, and his B.Tech. in Chemical Engineering from IITM in 1986. He also did his Masters work at the University of Cincinnati, USA, between 1986 and 1988.
More info
Media Object

Prof. Sanjib Senapati

Sanjib Senapati is a Professor in the Department of Biotechnology, Indian Institute of Technology Madras (IITM). His research group at I.I.T. Madras focuses on understanding the relationship between protein structure, function, and dynamics. Research is focused into two major sub-groups: 1) molecular modeling of enzyme-substrate/enzyme-inhibitor interactions and 2) structure-based drug designing. Studies are performed using computer simulation methods ranging from all-atom and coarse-grained molecular dynamics simulations, Monte Carlo simulations, protein-ligand and protein-protein docking. General properties that we address include change in protein structure and dynamics upon binding inhibitors and with mutations, ligand binding strength and specificity, and bound water structure.
More info

Teaching Assistant(s)

No teaching assistant data available for this course yet
 Course Duration : Jan-Apr 2021

  View Course

 Syllabus

 Enrollment : 18-Nov-2020 to 25-Jan-2021

 Exam registration : 15-Jan-2021 to 12-Mar-2021

 Exam Date : 25-Apr-2021

Enrolled

275

Registered

4

Certificate Eligible

3

Certified Category Count

Gold

0

Silver

1

Elite

1

Successfully completed

1

Participation

0

Success

Elite

Silver

Gold





Legend

AVERAGE ASSIGNMENT SCORE >=10/25 AND EXAM SCORE >= 30/75 AND FINAL SCORE >=40
BASED ON THE FINAL SCORE, Certificate criteria will be as below:
>=90 - Elite + Gold
75-89 -Elite + Silver
>=60 - Elite
40-59 - Successfully Completed

Final Score Calculation Logic

  • Assignment Score = Average of best 8 out of 12 assignments. Final Score(Score on Certificate)= 75% of Exam Score + 25% of Assignment Score
Note:
We have taken best assignment score from both Jan 2020 and Jan2021 course
Thermodynamics for Biological Systems: Classical and Statistical Aspect - Toppers list

SWASTI PANDA 78%

COLLEGE OF ENGINEERING AND TECHNOLOGY, BHUBANESWAR

Enrollment Statistics

Total Enrollment: 275

Registration Statistics

Total Registration : 4

Assignment Statistics




Assignment

Exam score

Final score

Score Distribution Graph - Legend

Assignment Score: Distribution of average scores garnered by students per assignment.
Exam Score : Distribution of the final exam score of students.
Final Score : Distribution of the combined score of assignments and final exam, based on the score logic.